Pensez le Futur.

[ML Tutorials #2] "Understanding Overfitting and Underfitting in a Quick 90-Second Read" 2778

Overfitting and underfitting represent two common issues in machine learning that affect the performance of a model. In the context of overfitting, the model learns the training data too precisely, capturing noise and fluctuations that are specific to the training set but do not generalize well to new, unseen data. Underfitting, on the other hand, occurs when a model is enabled to capture the underlying patterns in the training data, resulting in poor performance not only on the training set but also on new, unseen data. It indicates a failure to learn the complexities of the data. **Analogy : ** Intuitively, returning to the example of the student that we presented in the definition of the machine learning concept, we discussed the possibility of considering a machine learning model as a student in a class. After the lecture phase, equivalent to the training step for the model, the student takes an exam or quiz to confirm their understanding of the course material. Now, imagine a student who failed to comprehend anything during the course and did not prepare. On the exam day, this student, having failed to grasp the content, will struggle to answer and will receive a low grade; this represents the case of underfitting in machine learning. On the other hand, let's consider another student who, despite having a limited understanding of the course, mechanically memorized the content and exercises. During the exam, when faced with questions reformulated or presented in a new manner, this student, having learned without true comprehension, will also fail due to the inability to adapt, illustrating the case of overfitting in machine learning. This analogy between a machine learning model and a student highlights the insightful parallels of underfitting and overfitting. Just as a student can fail by not grasping the course or memorizing without true understanding, a model can suffer from underfitting if it's too simple to capture patterns or overfitting if it memorizes the training data too precisely. Striking the right balance between complexity and generalization is crucial for developing effective machine learning models adaptable to diverse and unknown data. In essence, this educational analogy emphasizes the delicate equilibrium required in the machine learning learning process.
Fatima Zahra  EL hajji (Tima EL)

Fatima Zahra EL hajji (Tima EL)

Choose peace, love yourself, keep smiling :) Life is only a short trip. Enjoy it.


3600

0

Narcissisme à l'extrême 16

Qu'il est beau l'homme au chapeau! Un pur sagittaire Hors pair Digne et téméraire Mystérieux Énigmatique Curieux Rêveur doux et rebelle à la fois Pour sa famille c'est une idole Pour ses confrères il est gentil et drôle Pour ses amis c'est un centre d'attractivité Ses journées inondent d'activités Il défie toutes les lois Regard revolver Imposant respect et égards Sociable et plutôt serviable Un sourire en coin ne laissant jamais indifférent ceux qui le côtoient l'admirent ceux qui le combattent finissent par déguerpir Sa beauté est perceptible de loin Quoique fanée à certains coins Il dissimule sous son chapeau clair bien des secrets, des énigmes, des rêves et des envies Son charisme est réel Un don du ciel Son élégance n’a rien à envier à ses concurrents Une force bien cachée, Une étoile qui chante au cœur d'une nuit égarée, une chanson d'amour du passé qui défie à l'infini et c'est mieux ainsi les autres étoiles ébahies et épatées dans un ciel serein et qui répètent des refrains en attendant la levée du jour et l'apparition du soleil et la chaleur des ses rayons tour à tour Sa bonté est légendaire Son amitié est exemplaire Sa réputation dépassent les frontières et rivalisent ses congénères Dr Fouad Bouchareb Tous les droits sont réservés Agadir le 17 juillet 2025